Trendanalistbatch

Er is ook een batch versie van Trendanalist beschikbaar, Trendanalistbatch.exe. Deze versie is vooral interessant voor netwerkbeheerders die trends van parameters willen bepalen in hun meetnet. Met slechts één aanroep van Trendanalistbatch in een programmeeromgeving  (zoals Matlab, R, Python of Access) kan van een invoerbestand met meetreeksen van een meetnet de trends bepaald worden. Trendanalistbatch levert resultaatbestanden die weer verder verwerkt kunnen worden in de betreffende programmeeromgeving.

Geplaatst in Diensten | Reacties uitgeschakeld voor Trendanalistbatch

Stroomlijnen meetnet

Een meetnet kan een krachtig en efficiënt instrument zijn bij het ondersteunen van de taken van een organisatie. Bij ons advieswerk hebben we inmiddels ruim ervaring opgedaan met allerlei deelaspecten van het meetnet, zoals ontwerpen en inrichten (wat, waar, wanneer en hoe meten), opstellen en beoordelen van meetprocedures, valideren en zonodig corrigeren van meetdata, verwerken van meetdata tot gewenste informatie en het rapporteren daarvan. Wij stellen daarbij vast dat de meetnetpotentie vaak niet ten volle beschikbaar is of niet volledig benut wordt. We hebben verschillende technieken ontwikkeld om een meetnet beter te stroomlijnen en beter te benutten …

Geplaatst in Diensten, Tijdreeksanalist, Trendanalist | Een reactie plaatsen

Verhogen zeggingskracht hydrologische tijdreeksanalyse

Hydrologische tijdreeksanalyse maakt het mogelijk om hydrologische verbanden tussen (doorgaans hoogfrequente) meetreeksen van grondwaterstand, neerslag, verdamping en soms ook grondwaterwinningen te beschrijven en te kwantificeren. Bij de toepassing van hydrologische tijdreeksanalyse, in softwarepakketten zoals Pastas en Menyanthes, worden in toenemende mate resultaten gegeven met gekwantificeerde betrouwbaarheden van modelparameters, statistische significanties van de relaties tussen de grondwaterstand en invloedsfactoren en toekomstige grondwaterstanden. Dergelijke statistische toepassingen zijn in principe pas te verantwoorden als er ook aan een aantal randvoorwaarden wordt voldaan, zoals de modelresiduen/innovaties zijn op te vatten als onafhankelijke trekkingen uit dezelfde normale kansverdeling (aangeduid als witte ruis).

De onderstaande beslisboom geeft de stappen om te verzorgen dat hydrologische tijdreeksanalyse ook daadwerkelijk statistisch verantwoorde tijdreeksanalyse wordt.


figuur 1: Beslisboom verbetering hydrologische tijdreeksanalyse

Voor alle checks in de beslisboom zijn in willekeurige programmeeromgeving bijbehorende statistische toetsen beschikbaar. Zie ook Tijdreeksanalist

Geplaatst in Tijdreeksanalist | Reacties uitgeschakeld voor Verhogen zeggingskracht hydrologische tijdreeksanalyse

Nieuwe versie Tijdreeksanalist

De nieuwste versie is van 14 juni 2019, versie 6.0.05.

De export van modelresultaten is uitgebreid met daarbij de mogelijk een rapport van de tijdreeksanalyse van een sessie te genereren. Voorbeeld van een rapportage van een modellering op dagbasis met daarbij grafieken van de residuenanalyse en simulaties:

Rapport_Test_GWS_PNO_Q

Versie 6 is ontwikkeld met de Matlab Compiler van augustus 2017.

In versie 5 is de modelresiduenanalyse uitgebreid met toetsen voor geen heteroscedasticiteit, met de Engle-toets en de Breusch-Pagan-toets. De Engle-toets toetst of de variantie van de modelresiduen constant is in de tijd. De Breusch-Pagan-toets toetst of de variantie van de modelresiduen onafhankelijk is van modelwaarden. Beide toetsen zijn extra belangrijke analysemogelijkheden voor het ontwikkelen van een betrouwbaar tijdreeksmodel.

Een nieuwe functionaliteit van Tijdreeksanalist is ook het ruimtelijk presenteren van tijdreeksanalyseresultaten. Per meetpunt kan informatie over de modellering opgevraagd worden. Niet onbelangrijk is daarbij de ‘gain’ of evenwichtsrelatie (de verandering van de uitvoervariabele bij een verhoging met een eenheid van de invoervariabele) met de bijbehorende standaardfout die aangeeft of een bijdrage van een invoervariabele significant is. Bij een betrouwbaar tijdreeksmodel, waarbij de modelresiduen normaal verdeeld zijn en geen autocorrelatie bevatten, is ook de evenwichtsrelatie normaal verdeeld. In het onderstaande voorbeeld mogen we met 95% betrouwbaarheid aannemen dat de bijdrage van zowel het neerslagoverschot als de winning significant is.

Als er sprake is van autocorrelatie van modelresiduen dan wordt de standaardfout van de evenwichtsrelatie onderschat. Wij stellen dat zonder een goed ruismodel afgeleide betrouwbaarheden onbruikbaar zijn. Zie ook voor de ontwikkeling van een betrouwbaar tijdreeksmodel Interactieve tijdreeksmodelontwikkeling.

Tijdreeksanalist (TRG) is een programma in ontwikkeling sinds 2005.

Geplaatst in Alle categorieen, Download, Tijdreeksanalist | Getagged , | Reacties uitgeschakeld voor Nieuwe versie Tijdreeksanalist

Tijdreeksanalyse – tijdreeksmodellen

Tijdreeksanalist (TRG 6.0) heeft een uitgebreide toolbox om een scala van mogelijke tijdreeksmodellen te analyseren om het beste model te kunnen selecteren. Belangrijke vragen die bij een goed tijdreeksmodel gesteld moeten worden zijn:

  • Hoe beschrijft het tijdreeksmodel de meetwaarden
  • Zijn alle invloedsfactoren in de modellering meegenomen
  • Is de te onderzoeken invloedsfactor voldoende veranderd
  • Zijn de invloedsfactoren voldoende niet onderling gecorreleerd
  • Wat is de bijdrage van de afzonderlijke invloedsfactoren in de modellering
  • Wat is de bijdrage van het ruismodel
  • Zijn de modelresiduen normaal verdeeld
  • Is er geen autocorrelatie tussen de modelresiduen
  • Is er geen correlatie tussen de modelresiduen en de invloedsfactoren
  • Is er geen heteroscedasticiteit
  • Wat zijn de onzekerheden van de modelparameters
  • Zijn de modelparameters significant
  • Hoe goed zijn de modelsimulaties en wat is de onzekerheid
  • Wat zijn de verschillen tussen de verschillende mogelijke tijdreeksmodellen in het beschrijven van de meetwaarden
  • Hoe goed zijn de modelvoorspellingen
  • Zijn de statistische relaties en zijn de modelparameters ook causaal te interpreteren

Wij vinden dat een uitgebreide toolbox nodig is en behulpzaam moet zijn om bovenstaande vragen te beantwoorden en om de onderzoeker te behoeden voor de vele valkuilen van de tijdreeksanalyse.

Een residuenanalyse, met toetsen op normaliteit en geen autocorrelatie, is onontbeerlijk om objectief statistische uitspraken te doen over de significantie van de statistische relaties. Als er niet wordt voldaan aan alle randvoorwaarden dan kunnen op basis van het afgeleide tijdreeksmodel er geen uitspraken gedaan worden over relaties met betrouwbaarheden en voorspellingen met onzekerheden.

Wij stellen:

  1. De reden om tijdreeksanalyse toe te passen is om de data te laten spreken
  2. Houd van de data en wantrouw je modellen!

Zie verder Tijdreeksanalist (TRG)

Geplaatst in Alle categorieen, Tijdreeksanalist | Getagged | Reacties uitgeschakeld voor Tijdreeksanalyse – tijdreeksmodellen

Samenwerkingsverband tijdreeksanalyses

Bij een samenwerkingsverband leveren we een gratis licentie van Tijdreeksanalist. U levert ons een dataset en wij leveren u de (verwerkte) dataset met de uitgevoerde tijdreeksanalyses. Met Tijdreeksanalist kunt u de tijdreeksanalyses naspelen en eventueel betere tijdreeksmodellen ontwikkelen.

Geplaatst in Tijdreeksanalist | Reacties uitgeschakeld voor Samenwerkingsverband tijdreeksanalyses

Download probeerversie Trendanalist

Download probeerversie Trendanalist (voor de toegang leveren we een wachtwoord)

Trendanalist is een softwarepakket om trendanalyses mee uit te voeren. Op de downloadpagina stellen we de standalone versie van Trendanalist ontwikkeld met de Matlab Compiler van 2017 voor Windows (64 bits) beschikbaar.

Geplaatst in Trendanalist | Reacties uitgeschakeld voor Download probeerversie Trendanalist

Waarom trendanalyses met Trendanalist

  1. Trendanalist is een uniek programma, omdat het trendanalyses optimaal uitvoert en daarbij rekening houdt met de karakteristieken van de meetreeksen, zoals het niet-normaal verdeeld zijn, seizoenseffecten, autocorrelatie, ontbrekende en gecensureerde waarden
  2. Trendanalist bevat daarvoor vier verschillende lineaire modelleringen en drie verschillende vormen van de parametervrije Mann-Kendall toets
  3. Trendanalist kiest daarbij de optimale trendtoets met de kleinste kans op verkeerde conclusies
  4. Trendanalist kan volledig automatisch honderden meetreeksen sequentieel analyseren
  5. Statististische kennis is geen vereiste meer
  6. Trendanalist kan verschillende bestandsformaten inlezen, zoals het csv-dataformaat van iBever of van Aquo-kit
  7. Trendanalist genereert resultaten in grafische, spreadsheet en tekst-bestanden
  8. Trendanalist presenteert de resultaten rechtstreeks in Word, Excel en Google Earth
  9. Trendanalist levert tijds- en kostenbesparingen op met meer kwaliteit
  10. Geen onverantwoorde trendanalyses meer (op basis van een subjectieve interpretatie of met een enkele trendtoets) die leiden tot dure maatregelen
  11. Geen dagen, weken of soms maanden ‘ploeteren’, terwijl het met een ‘druk op de knop’ (van de automatische mode) van Trendanalist kan
  12. Eindelijk tijd om trendanalyseresultaten te interpreteren, te verwerken en te rapporteren.

Zie ook Trendanalist

Geplaatst in Trendanalist | Getagged , | Reacties uitgeschakeld voor Waarom trendanalyses met Trendanalist

Trendkaarten waterkwaliteit

Een trendkaart is een informatieve vorm om trendanalyses te presenteren. Trendanalist bevat de onderstaande functionaliteit om trends te presenteren. Ook het trendpalet is een informatieve vorm voor het presenteren van trendanalyseresultaten.

Google Earth

Trendanalyses op meetpunt 00599 van waterschap Zuiderzeeland

Voorbeelden van trendkaarten (van waterkwaliteit) op Internet zijn:

Geplaatst in Trendanalist | Getagged , | Reacties uitgeschakeld voor Trendkaarten waterkwaliteit

Toepassing enkele trendtoets is dat verstandig?

Is er een trend in een tijdreeks dan is het altijd de vraag of een trendtoets die trend ook als (significante) trend detecteert. Vaak wordt er één enkele trendtoets toegepast, maar kan één enkele trendtoets onder alle omstandigheden worden toegepast?

Simulaties zijn uitgevoerd voor het bepalen van de trenddetectie van zeven trendtoetsen onder verschillende omstandigheden. De trenddetectie is daarbij het percentage gedetecteerde significante trends (met 95% betrouwbaarheid) als functie van een trend. De trenddetectie is daarbij een schatting van het onderscheidend vermogen (‘power’) van een trendtoets. De zeven trendtoetsen zijn:

  1. LR: lineaire regressietoets
  2. LRs: lineaire regressietoets met verdiscontering seizoenseffecten
  3. LRa: lineaire regressietoets met verdiscontering autocorrelatie
  4. LRsa: lineaire regressietoets met verdiscontering seizoenseffecten en autocorrelatie
  5. MK: Mann-Kendalltoets
  6. MKs: Mann-Kendalltoets met verdiscontering seizoenseffecten
  7. MKsa: Mann-Kendalltoets met verdiscontering seizoenseffecten en autocorrelatie

In de onderstaande grafiek is de trenddetectie bepaald van zeven trendtoetsen bij modelsimulaties van een log-normaal proces met autocorrelatie (0.5) en seizoenseffecten, waarop lineaire trends van oplopende grootte zijn gesuperponeerd. In theorie zou bij deze omstandigheid de MKsa-trendtoets de best passende trendtoets moeten zijn.

Aangezien er geen sprake is van een normaal verdeeld proces presteren de lineaire regressietoetsen (LR*)  duidelijk minder dan de verdelingsvrije Mann-Kendall toetsen. Let op dat bij geen trend (trend=0) het percentage trenddetectie niet groter dient te zijn dan 5%; we toetsen immers met 95% betrouwbaarheid. De MKs-trendtoets verdisconteerd niet de autocorrelatie en geeft bij geen trend een trenddetectie van 20%! De LR-toets geeft bij geen trend een trenddetectie van 14% en de trenddetectie is ruim kleiner dan van de MKsa-toets, de beste passende trendtoets.

Conclusie

Een belangrijke conclusie is dat het onverstandig is om trendanalyses uit te voeren met één en dezelfde trendtoets. Is er geen sprake van een normaal verdeeld proces pas dan geen lineaire regressie toe, want één van de verdelingsvrije trendtoetsen is krachtiger. Is er sprake van autocorrelatie (zoals bij relatief hoog frequente metingen van een traag proces) pas dan niet de MKs-trendtoets toe, want dan is de kans groot dat ten onrechte een trend gedetecteerd wordt. Het uitvoeren van trendanalyses verdient maatwerk, onderzoek het onderliggende proces en kies de best passende trendtoets.

Wat is onder welke omstandigheid de beste trendtoets en hoe verhoudt die trendtoets zich tot de overige trendtoetsen? Of welke rol speelt de autocorrelatie in een tijdreeks betreffende de trenddetectie als er geen sprake is van een trend? Zie ook  ‘Trenddetectie van trendtoetsen onder verschillende omstandigheden’.

Geplaatst in Trendanalist | Getagged , | Reacties uitgeschakeld voor Toepassing enkele trendtoets is dat verstandig?